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Non-Debye dielectric relaxation in biological structures arises from their fractal nature

ValericăRaicu,* Takayuki Sato, and Georgeta Raicu
Department of Physiology, Kochi Medical School, Nankoku 783-8505, Japan

~Received 3 January 2001; revised manuscript received 16 March 2001; published 27 July 2001!

What differentiates biological tissues from one another, thereby allowing their accomplishment of a physi-
ological function, is their organization at supracellular and cellular levels. We developed general dielectric
models for Cantorian~or treelike! fractal networks of transmission lines that mimic supracellular organization
in numerous biological tissues and tissue surfaces, and which are compatible with bothin vitro and in vivo
measuring techniques. By varying a set of adjustable physical and geometrical parameters pertaining to the
structure, we could numerically reproduce a variety of dielectric dispersion curves—most of them of a com-
posite type—that suitably described experimental data from relatively organized biological tissues. We there-
fore conclude that the well-documented non-Debye dielectric behavior of biological structures reflects their
self-similar architecture.
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I. INTRODUCTION

Fractal organization of biological matter, viz, its constru
tion in a repetitive or self-similar manner@1# is a fact of
incontestable beauty and source of growing interest for
study of biological objects’ architecture@2–4#. This design
principle is thought to occur as a necessity for keeping t
minimum the amount of genetic information to be transm
ted in the process of organism growing@1,3#, for optimal
functioning of the system with minimal consumption of e
ergy @5#, or for an increase in the surface/volume ratio
systems involving transport through surfaces@3#, to cite but a
few of the literature interpretations.

The method most widely used for investigating biologic
structures relies on textural analysis of sample sections, f
which the observed features can be put in a quantitative f
such as the fractal dimension@4#. Analysis of histological
data@2,3,6# suggests that fractal structures in tissues fall i
two main categories:~1! percolatingor labyrinthine agglom-
erations of cells~e.g., liver parenchyma!; and ~2! Cantorian
structures including branching vascular networks~in, e.g.,
lung, and plants leaves!, and rough surfaces such as epithe
~e.g., skin! and cell membranes~in, e.g., lymphocyte and
hepatocyte!. The second category, which is of special inter
in this work, owes its name to a mathematical conc
known as the Cantor bar~or set! @1#, which is obtained by
repetitive division of a line segment into three or more s
ments and removing the middle ones~Fig. 1!.

Unfortunately, however interesting and stimulating, m
phological studies tell little, if at all, about how the structu
determines the physical properties of a tissue as a whol
facilitate its accomplishment of a physiological function. B
contrast, techniques based on transport phenomena in d
dered systems@7# appear to answer this question, as transp
phenomena are presumably affected by the type of struc
involved and by the physical properties of its constitue
@8–10#. Of these techniques, those based on transpor
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electrical charge driven by alternating currents of varia
frequencies, known generically asimpedance@11# or dielec-
tric @12# spectroscopy, are particularly useful, because o
their added capability forin vivo investigations@13,14#.

The interpretation of the results obtained from dielect
spectroscopy studies requires electrical models that relate
frequency spectra of permittivity and conductivity~alterna-
tively, impedance modulus and phase! @15,16# to the electri-
cal and structural characteristics of the tissue constitue
~i.e., the cells!. Classical dielectric theories for systems
cells rely on assumptions of high dilution and random dis
bution of cells within the sample and predict Debye-ty
frequency-dependent permittivity and conductivity bo
varying between low and high frequency plateaus@12,15,17#.
Though such models have been successfully applied to d
cell suspensions or to single cells@18#, their underlying ap-
proximations no longer hold if the particles get closer
form more or less orderly aggregates. This may lead to
absence of the low frequency plateau from the dispers
curves, which has recently been well documented@10,19,20#.
However, with rare exceptions@14#, an electrodynamica
treatment of particle aggregates is presently restricted
two-particle system~see, for instance, Ref.@21#!.

Fortunately, the fractal disposition of cells within most
biological tissues suggests a possible reformulation to
‘‘aggregate’’ problem in terms of total impedance of fract
networks, which have been used earlier to model electr
properties of several systems including percolative structu
@22#, and rough metal-electrolyte interfaces@23–28#. Liu was
the first to propose a deterministic resistor-capacitor~RC!
network based on the Cantor bar model as a possible solu
to the century-old problem of ‘‘anomalous’’ AC response
rough electrode/electrolyte interfaces@23#. Further refine-
ments by Kaplanet al. @24,25# considered the effect of dis
order as well as the possibility of interchanging the electro
and electrolyte to form the inverse Cantor bar model. B
Liu’s original model and its subsequent modifications p
dicted that the impedance behaves at low frequencies
( j f )2h @which represents the constant-phase-angle~CPA!
law with j 5(21)1/2 and h being a function of the fracta
dimensiond of the interface#—a result that Sapovalet al.
©2001 The American Physical Society16-1
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@27# and Blunt@28# showed to be valid under limited cond
tions only. The way into the biological field has been open
for the Cantorian models by Sapoval@26#, and later by Dis-
sado and co-workers@8,29# who outlined the basic principle
of applying fractal models in biodielectric studies. In spite
its remarkable potential of modeling biological structur
@2–4#, however, the fractal approach has been largely di
garded by biodielectricians, or, in the rare cases that it
ceived attention, it was met by skepticism~see Ref.@15# for
a typical opinion!. This is because, while previous works o
fractal structures have mostly sought to identify factors le
ing to the existence of the CPA law at low frequencies,
biological system has been identified whose dielectric pr
erties show plain CPA behavior over a wide frequency ran
In fact, biological tissues’ dielectric response is usually m
complex—sometimes composed oftwo ~or more! elements
of a CPA- or Debye-type, or combinations of them@10,20#.
Grounded on a superficial reasoning, this may imply frac
models inadequacy.

To clarify whether the fractal approach still has a role
play in the interpretation of biodielectric data, we underto

FIG. 1. Four-stage Cantor bar~top! and two Cantorian struc
tures: fractal treelike vascular system~middle!, and section of a
tissue/fluid rough interface~bottom!. The Cantor set is obtained b
dividing a line segment into, for instance, three segments and
moving the middle one, then repeating the operations for each
maining segment, and so on, until the desired level is reached
02191
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a detailed study of branching deep-tissue structures and
sue surfaces by using a general Cantorian model base
the transmission line formalism in which, unlike most of th
previous models, the line characteristics are distributed pr
erties and are generally complex quantities. This facility
required since most parts of the real biological tissues
neither pure conductors nor pure dielectrics as considere
the case of metal/electrolyte interfaces. To allow for differe
branch geometries and/or intrinsic structures~such as the
vessel walls in the case of vascular trees!, the branch longi-
tudinal and transverse electrical properties are let to s
independently, rather than being correlated as in the prev
reports. Under these provisions, and upon proper choice
sets of electrical and geometrical parameters, we succe
in stimulating a variety of composite dielectric dispersi
spectra that are very similar to those obtained in experim
tal studies.

Details of our proposed model are given in Sec. II of th
paper, for an electrode-tissue configuration compatible w
in vitro investigations and for two additional configuration
pertaining toin vivo studies of vascular trees and rough
surfaced epithelia. Models of the second type have not b
proposed before; yet, most of the recent experimental stu
on tissues are performedin vivo and would require consid
eration of pertinent models. In Sec. III, computer simulatio
of dispersion spectra are carried out for some particular ca
thought of as illustrative for the dielectric behavior of bi
logical structures. Comparative results for electrode confi
rations compatible within vitro and in vivo situations are
also presented. The dispersion spectra predicted by
present model are discussed in Sec. IV in connection w
literature data and with the results we obtained from simu
tions with lumped-element~i.e., RC! Cantorian networks. In
addition, some interesting findings regarding the uniquen
of the results of measurements on Cantorian fractals are
cussed, and possible directions for future development
outlined. Section V concludes the paper summarizing
main results.

II. GENERAL ELECTRICAL MODEL
FOR CANTORIAN FRACTALS

A. Problem formulation

Figure 2 schematizes a typical situation for impedan
measurements of Cantorian-type fractal structures com
ible with in vitro investigations~see later!. For simplicity, we
only illustrate the case forN52 daughter branches emergin
from parent branch at each branching point with all branc
situated in the same plane, but the general admittance e
tions introduced in the next section hold for anyN value and
any spatial orientation of the branches. For identification
each branch, we usem as generation index within the tree
and n for individuals within their generation. For a syste
consisting ofM generations of branches withN>2, m varies
from 0 to M-1, while n varies from 0 toNn-1.

The equivalent circuit of the Cantorian structures in Fig
~called hereinafter ‘‘Model 1’’! can be thought of as treelik
network of transmission lines, in which parallel combin
tions ofN branches of generation indexm11 provide termi-

e-
e-
6-2
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NON-DEBYE DIELECTRIC RELAXATION IN . . . PHYSICAL REVIEW E64 021916
nal admittances for each member of themth generation. In
this sense, electrical componentsr m,n* andgm,n* in the figure
should be regarded as distributed parameters representin
longitudinal~complex! resistance per unit length of line~i.e.,
Rm,n* /Lm,n), and the transverse~complex! conductance pe
unit length of line or the conductance between the late
face of the line and the ground electrode~i.e., Gm,n* /Lm,n!.
The termination admittanceT5GT1 j vCT of the last gen-
eration of branches~index M-1! could be either a constan
capacitance or conductance, or a more complica
frequency-dependent parameter, depending on the pecu

FIG. 2. Possible geometrical disposition of the measuring e
trodes~E1 andE2! compatible within vitro dielectric measurement
~Model 1! on Cantorian deep-tissue structures~top! and interfaces
~middle!, and corresponding electrical circuit modeled as a frac
network of transmission lines~bottom!. Geometrical characteristic
of the first and second branch generations are also shown. Da
lines signify thatr * andg* are distributed parameters~i.e., R* and
G* per unit length!, while the asterisk indicates that they are co
plex quantities. Other symbols are described in the text.
02191
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ties of the investigated system. For example, for rough s
faces, the underlying tissue provides termination admittan
for the structure, while for a vascular tree in the lung, t
terminal admittance represents the alveolar region includ
blood capillaries in the alveolar walls. If frequency depe
dent, the termination admittance will contribute addition
subdispersions to the overall spectra, as also does any
quency dependence in the transverse conductanceG* or lon-
gitudinal resistanceR* . However, we will avoid such details
in the present work, which intends to setup a framework
more detailed future analyses and reveal the main feature
electrical phenomena occurring in dense biological syste

As a general rule we shall comply within the calculatio
below, the lettersm, n, andk are summation or multiplication
indexes whenever they appear as subscripts of some s
bols, and power exponents when appearing as supersc
The same rule applies to the letterN with the specification
that this also appears as an independent symbol standin
the branching degree, as defined above.

As one can readily see, the electrode configuration sho
in Fig. 2 ~Model 1!, though easy to understand and int
itively appealing, can only be applied ininvasivestudies,
which constitute a significant drawback from the biophy
cist’s point of view. More precisely, for a vascular tree, a
cess of theE1 electrode to the interior of the trunk can on
be gained after sectioning the latter, a procedure that wo
affect the viability of the whole system. Similarly, for th
roughly surfaced epithelia, placing one electrode under
skin would require skin excision. On the contrary, by placi
the measuring electrodes on that side of the tissue tha
naturally accessible to the investigator, as shown in Figs
~Model 2! and 4~Model 3!, one would avoid the problem o
invasiveness for both types of systems discussed, and w
therefore be able to study the tissuesin vivo. In these two
cases, the equivalent circuits are modified as follows. For
vascular tree~Fig. 3!, the two subtrees consisting of branch
from generation 1 upward are serially connected, while
the rough interface~Fig. 4!, the two subtrees are connected
parallel.~A very rigorous electrical modeling of the structu
presented in Fig. 4 should consider also a serial coup
between the two~or more! substructures at the level of the
termination admittancesT.! In both cases, a complex stra
conductanceGie* was added in parallel to the whole netwo
to account for the current flow between electrodes throu
other pathways than the fractal network. This additional c
ductance has an experimental support, and has been p
ously investigated by us in connection with a superficial flu
layer intervening between the tissue surface and the tip of
measuring probe@19#.

B. Input admittance of an individual branch modeled
as a transmission line

According to the general theory of transmission lin
@30#, the input admittance measured at the downstream
of line m, n having the characteristic admittanceKm,n ,
propagation constantgm,n , and terminated by an admittanc
Yt , due toN daughter branches~index m11!, may be ex-
pressed as

c-

l

ed
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Ym,n5
Yt1Km,n tanh~gm,nLm,n!

11~Yt /Km,n!tanh~gm,nLm,n!
~1!

with the transmission characteristics given by

Km,n
2 [gm,n* /r m,n* 5Gm,n* /Rm,n* , ~2!

gm,n
2 [gm,n* r m,n* 5Gm,n* Rm,n* /Lm,n

2 . ~3!

Next, assume thatGm,n* and Rm,n* change from one gen
eration of branches to another by some factors to be defi
below, due to changes in vessel size, position, and orienta
with respect to the ground electrode. Because of s
similarity, if the properties of any single branch are know
then the properties of all other branches can be calcul
recurrently. In particular, we shall relate theGm,n* and Rm,n*
of any branchm, n to those of the trunk of the tree, namel
G0,0* andR0,0* ~or simplyG0* andR0* !. For this, we transiently
employ the definitions Gm,n* 5Fm,nLm,ns t* and Rm,n*

FIG. 3. Top: Possible geometrical disposition of the measur
electrodes~E1 andE2! compatible within vivo dielectric measure-
ments on Cantorian deep-tissue structures~Model 2!. Bottom:
Equivalent electrical circuit for the fractal network of transmissi
lines shown at the top.Gie* 5Gie1 j vCie is a stray conductance tha
directly connects the two electrodes~i.e., outside the fracta
‘‘route’’ !. Other symbols, same as in Fig. 2.
02191
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5(Am,nsl* )21Lm,n , wheres t* is the transverse andsL* is the
longitudinal equivalent complex conductivity,Lm,n andAm,n
are the length and the transverse sectional area of the bra
while the factorFm,n depends on the branch dimensio
other thanLm,n and on its distance and orientation relative
the ground electrode.~If, for example, the branch is a cylin
der of radiusra coaxial with a cylindrical ground electrod
of radiusrb , thenF52p/ ln(rb /ra).! Consequently, one can
write down the following relations for transversal condu
tance and longitudinal resistance:

g

FIG. 4. Top: Possible geometrical disposition of the measur
electrodes compatible within vivo dielectric measurements on Can
torian tissue/fluid interfaces~Model 3!. Bottom: Equivalent electri-
cal circuit for the fractal network of transmission lines shown at
top.Gie* 5Gie1 j vCie , is a stray conductance that connects the t
electrodes outside of the fractal ‘‘route.’’ Other symbols, same a
Fig. 2.
6-4
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NON-DEBYE DIELECTRIC RELAXATION IN . . . PHYSICAL REVIEW E64 021916
Gm,n* 5G0*
Fm,nLm,n

F0,0L0,0

5G0* )
k51

m
Fk,@n/Nm2k#Lk,@n/Nm2k#

Fk21,@n/Nm2k11#Lk21,@n/Nm2k11#
for m>1

5G0* for m,n50, ~4!

Rm,n* 5R0*
A0,0Lm,n

Am,nL0,0

5R0* )
k51

m
Ak21,@n/Nm2k11#Lk,@n/Nm2k#

Ak,@n/Nm2k#Lk21,@n/Nm2k11#
, for m>1

5R0* for m,n50, ~5!

where the symbol@ # extracts the integer part of the number
contains.

The last forms of Eqs.~4! and ~5! together with Eq.~1!
provide means for computing the input admittance of a
branchm, n, as we shall detail in the next section.

C. Total admittance of the fractal networks

To compute the total admittance of the structures p
sented in Fig. 2, as measured betweenE1 andE2 , first con-
sider the youngest generation of branches~index M-1! and
compute their input admittances from Eq.~1! by ascribing
values~see sections II A and III A 2! to the real and imagi-
nary parts of terminal admittancesT. Then, the total admit-
tance of each group ofN branches having the same moth
branch provides terminal admittances,Yt5(k50

N21Ym,nN1k ,
for the generationm5M -2; the process can be iterate
down to the generationm50 ~i.e., the trunk of the tree! until
the input admittance of the whole structure is obtain
(Ystructure5Y0,0).

The admittance of the structures presented in Figs. 3
4 is computed by following the same procedure, except
the last step for which the iteration ends at generation
Then, the total admittance is computed by using the formu
for the series or parallel arrangements, depending upon
case.

It is to be mentioned that, in practice, the number of s
structures lying beneath each electrode cannot, in genera
rigorously specified. In addition to this, the electrodes geo
etry may also affect the results of measurements. Our m
thus describes the reality only on average. In fact this lim
tation is not purely theoretical; it has an experimental ori
and reflects the difficulty to control the position relative
the electrodes of substructures within the tissue. The poss
implications of such dependence of measurement result
the experimental conditions should not be disregarded,
we will turn our attention onto this matter later on in th
work.

III. RESULTS

A. Approximations

To compute the total admittance of the structures d
cussed above, one needs to be more specific with rega
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the choice of model parameters, which may depend upon
peculiarities of each tissue. However, we will not stick in th
section to any particular tissue, as the main goal herein i
unveil the dielectric ‘‘signature’’ of Cantorian structures. F
this, we will make some approximations to be described
low.

1. Symmetrical tree

It is assumed that all branches in the same genera
have the same size and that the diameter and length
branches only change by constant factors from one gen
tion to another, which appears to be quite acceptable for
case of a vascular tree at least@2#. Consequently, theA, and
l ratios in Eqs.~4! and~5! are constants independent of ord
m, n. In addition to this,F ratio is also considered constan
though the parameterF accounts for the position and orien
tation of the vessels with regard to the measuring electro
which might not be the same for all branches of the sa
generation. On these assumptions, we have

Fk,@n/Nm2k#Lk,@n/Nm2k#

Fk21,@n/Nm2k11#Lk21,@n/Nm2k11#
[a5const,

Ak21,@n/Nm2k11#Lk,@n/Nm2k#

Ak,@n/Nm2k#Lk21,@n/Nm2k11#
[b5const

for any 1<k<m, and the multiple products in Eqs.~4! and
~5! could be replaced by the simpler quantitiesam andbm, so
that

Gm,n* 5G0* am ~48!

and

Rm,n* 5R0* bm ~58!

for any 0<m<M21 and 0<n<Nm21.

2. Homogeneous branches

The intrinsic dielectric dispersions of the cells constitu
ing the fractal structure are not considered, as they may o
affect the shape of the dispersion curves at relatively h
frequencies while our interest here is in elucidating the eff
of tissue architecture. Accordingly, constant values were c
sen for the real and imaginary parts of the electrical para
etersR0* , G0* , and T. In particular,G05Re(G0* ) was ne-
glected to reflect the relatively low conductivity of th
membranes of the cells bordering the structure~i.e., the
branch wall!, while C05Im(G0* )/v ~with v being the angular
frequency! was varied as described below. Also,R0* was re-
placed by the quantity L0 /(A0sL* ), where sL* 5sL

1 j v«0«L with sL and«L the longitudinal electrical proper
ties of the branch, and«058.854310212F/m.

B. Computer simulations for the in vitro network model

The dispersion curves obtained from simulations with
network model compatible with in vitro measurements~Fig.
2! are shown in Figs. 5–7, for different sets of model para
6-5
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VALERICĂ RAICU, TAKAYUKI SATO, AND GEORGETA RAICU PHYSICAL REVIEW E64 021916
eters that were considered as illustrative for the present w
The data~points! represented as relative dielectric consta
and loss tangent vs frequency, were calculated by usin
value of 9.4 mm for the measuring cell constant@13#, which
approaches the values for the probes employed in mos
our previous studies of tissues~see, e.g.,@19#!.

As seen in Fig. 5, a family of dispersion curves with r
markable properties can be obtained upon variation of
model parameterb defined above. These curves were fitted
a general dispersion function~GDF! to be defined momen
tarily, and the best-fit parameters were collected in Tab
together with the parameters corresponding to the subseq
figures. A special case of the GDF, which is relevant to
present work and which incorporates the Debye-type@31#
functions and the ‘‘universal’’ response@32# as its particular
cases, reads@10#:

«* [«2 j s/~2p f «0!

5«h1
D

~ j f / f c!
a1~ j f / f c!

12b 1
s l

j 2p f «0
, ~6!

where the permittivity« is relative to the value of free spac
(«058.854310212F/m), s is the conductivity, andl andh

FIG. 5. Effect of variation of the geometrical parameterb de-
fined in the text upon the simulated frequency spectra of rela
permittivity and loss tangent of Model 1~Fig. 2!. R0* , computed
~see text! from sL50.6 S/m,«L570, andL0 /A053.23104 m21. T
(5GT1 j vCT), computed fromCT51 pF, andGT50 S. Other pa-
rameters are shown in the inset. Also added~solid lines!, simula-
tions by the GDF@Eq. ~6!# with parameters given in Table I.
02191
k.
t
a

of

e

I
ent
e

refer to the low and high frequenciesf, respectively;a andb
are real constants between 0 and 1;f c is the characteristic
frequency; andD is a dimensional constant. Aided by anal
sis with this function, the results presented in Fig. 5 rev
the following.

~i! For subunitaryb values, dispersion curves of a pu
Debye type@i.e., Eq. ~6! with a5b50] were generated
which are characterized by an abrupt decay of the permit
ity between low and high frequency plateaus, and by a re
tively narrow pick of the loss tangent.

~ii ! Values ofb significantly larger than unity bring abou
broadening of the permittivity curve, accompanied by a lo
tangent curve flattening over a wide frequency range. As
lowest frequency available in biodielectric measureme
hardly goes down to values of 1 mHz or so, due to techn
limitations as well as to unavoidable experimental artifa
~such as electrode polarization!, the plateau in the permittiv-
ity predicted by our simulations with the fractal model us
ally escapes experimental observation. This justifies our s
plified representation of data by a descending straight lin
Fig. 5 ~i.e., Eq. 6 witha512b51/2!.

~iii ! Further increase inb leads to important changes i
the lower side of the dispersion spectra, so that the per
tivity curve shows two CPA-type portions~i.e., straight lines
of different slopes!, to which two flat~constant! regions of
the loss tangent are associated. Again, this non-Debye be

e

FIG. 6. Formation of the low frequency side of a nonclassic
type dispersion curve upon increasing the number of tree bran
M of the structure shown in Fig. 2~i.e., Model 1!. Model param-
eters, as described in the legend to Fig. 5. Also added~solid lines!,
simulations by GDF@Eq. ~6!# with the parameters given in Table
6-6
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NON-DEBYE DIELECTRIC RELAXATION IN . . . PHYSICAL REVIEW E64 021916
ior of permittivity evolves into a low-frequency plateau th
may not be experimentally detectable, and the general
persion function@Eq. ~6!# could be a good representation
the experimental data over a very wide frequency range
illustrated in Fig. 5. As the asymptotic behavior of GDF@Eq.
~6!# for a1b,1 is of the formf 2a for low frequencies and
f 2(12b) for high frequencies, the two CPA characteristi
have slopes2a and2(12b). This type of response may b
regarded as a generalization of Jonscher’s universal resp
@32,33#.

To further illustrate the way a general dispersion spectr
arises from the fractal model, the results of simulations
different values of the number of branch generationsM are

FIG. 7. Effect of variation of the geometrical parametera upon
the simulated frequency spectra of relative permittivity and l
tangent of the Cantorian structures in Fig. 2~Model I!. Model pa-
rameters, as described in the legend to Fig. 5. Also added~solid
lines!, simulations by GDF~Eq. 6! with the parameters listed in
Table I.
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plotted in Fig. 6. It is seen how the low-frequency CPA co
ponent is progressively built upon addition of responses fr
different generations of branches. From the comparison
tween Figs. 5 and 6 forb510, one can also infer that varia
tion of C0 leaves the parametera in Eq. ~6! unchanged~i.e.,
it preserves the type of response!, while modifying the val-
ues of the other parameters~see Table I!.

Keeping the parameterb constant and varying the param
eter a, which defines the ratio between the longitudinal r
sistance of successive tree branches, one obtains dispe
curves of a composite type, in fact, combinations of t
known types of dispersion, as shown in Fig. 7~see also the
corresponding rows of Table I!. Thus, by increasing the pa
rametera, the single Debye dispersion transforms into
combination of a Debye-type term at low frequencies an
Cole-Cole type one at high frequencies. Largera values in-
troduce a component of an unclassified type between the
Debye-type dispersions, which has itself a composite nat
For this latter case, a proper fit by one or two GDF ter
was, evidently, not possible.

Variation of other model parameters could be also stud
~as we actually did!, but this reveals dispersion curves of th
same types as those already discussed.

C. Simulations for the in vivo network models

As mentioned above, in the practice of dielectric measu
ments on biological tissues,in vivo techniques are generall
preferred to thein vitro ones. It was therefore of interest fo
this study to find out the differences that may occur betwe
the results ofin vivo ~Figs. 3 and 4! and in vitro ~Fig. 2!
measurements of the same Cantorian structure.

The comparative results for all three models presente
this paper are shown in Fig. 8. As seen, the parallel-ty
combination of the two subtrees~Model 3! gives a much
higher permittivity than both thein vitro ~Model 1! and thein
vivo-series~Model 2! configurations throughout the invest
gated frequency range, while differences between the« val-
ues for Models 1 and 2 occurred at high frequencies only
reflected by different values of the«h in Table II. On the
other hand, the low frequency sides of the loss tangent s
tra of both in vivo cases differed markedly from those o
tained for the Model 1, owing to very different values tak
by the s i parameter~see Table II!. Furthermore, almost no
difference was found between the Model 2 and Model 1
Gie* 5010 j , while Model 3 gave still distinct results in thi
case, as reflected by the parameters presented in Tab

s

TABLE I. Parameters corresponding to the best-fit simulations by Eq.~6! ~lines! of the data~points! in
Figs. 5–7.

Fig. No. Dispersion type a1 b1 D1 f c1 ~Hz! a2 b2 D2 f c2 ~Hz! «h s l ~S/m!

5 Debye 0.00 0.00 1.43105 2.53104 25 4.131025

5 CPA ~Universal! 0.50 0.50 1 1.03108 0.35 1.531028

5 General 0.30 0.36 15 7.03104 0.15 6.5310214

6 General 0.30 0.38 2.03102 3.73103 0.46 6.0310214

7 Debye 0.00 0.00 1.53103 1.23104 0.18 1.431026

7 Debye1Cole-Cole 0.00 0.00 4.53103 4.03103 0.00 0.38 13.9 1.83106 1.55 1.331026
6-7
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~For simplicity, data corresponding toGie* 5010 j were not
plotted in Fig. 8!.

The near identity between the permittivity curves of thein
vivo series and thein vitro models seen in Fig. 8 at frequen
cies lower than; 10 kHz may appear paradoxical whe
judging based on a lumped-circuit-elements model. Ho
ever, the paradox is only apparent, as the effect is due to
distributed parameters formalism used in the present w
and to the particular circumstance that the branch wall c
ductivity G0 has been neglected in our numerical simu
tions. Evidently, this last approximation does not necessa

FIG. 8. Dispersion spectra of a Cantorian structurein vitro ~Fig.
2—Model 1! as compared to those predicted by thein vivo models
presented in Figs. 3~Model 2! and 4~Model 3!. Also added~solid
lines!, simulations by GDF@Eq. ~6!# with the parameters given in
Table II. Cie andGie apply to Models 2 and 3 only. Other param
eters: R0* , computed~see text! from sL50.6 S/m, «L570, and
L0 /A057.963103 m21; T (5GT1 j vCT), computed fromCT

51 pF, andGT50 S.
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hold true for biological tissues over an indefinite frequen
range, but it appears rather good at subradio frequencie
which our above discussion refers.

IV. DISCUSSION

A. Comparison with the literature data

The ‘‘general’’ type of dispersion presented in Figs. 5 a
6 exhibits striking similarities with the data from measur
ments on the human skin~see Fig. 2 of Ref.@20#! over a
wide frequency range, which could be remarkably well fitt
to Eq. ~6!, both for wet~with physiological saline! and dry
~i.e., untreated! skin surface. To be meticulous, howeve
there are indications in the above-cited data that two term
the general type@Eq. ~6!# would be even more suitable. Thi
is what would have been actually expected for the skin h
ing both a rough surface and a network of capillaries~possi-
bly of a fractal type! lying underneath, which, according t
the present model, could well lead to a two-terms dispers

Nearly the same type of dispersion as above has b
obtained experimentally for the lung tissue~see, e.g.,@34#!.
Thus, our model may furnish the necessary link between
well-documented fractal~treelike! structure of the airways
and the blood vessels in the lung@3,35#, and its non-Debye
dielectric characteristics, although combined dielectr
morphometric experimental studies would be required fo
well-grounded conclusion in this respect.

Less expectedly within the framework of this paper, ch
acteristics of the ‘‘general’’ type have been obtained fro
measurements on liver@10,19# as well as on other biologica
tissues@36# whose structure belongs to the class of perco
tion fractals mentioned in the introduction section. Howev
the two types of structures may present profound similari
at the level of the general laws of transport phenomena
fractal lattices@37#, which may explain our findings.

It should be also mentioned that simple Debye-type d
persion curves as shown in Fig. 5 have not been observe
biological tissues. This is probably because morphome
data do not support subunitaryb values~in e.g., rat lung, an
averageb value;1.7 can be calculated from morphologic
data@38#!.

B. Distributed vs lumped circuit parameters

As stated in the Introduction, literature models for Can
rian systems@23–28# made no allotment for independen
scaling of the transversal and longitudinal branch electr
TABLE II. Parameters corresponding to the best-fit simulations by Eq.~6! ~lines! of the data~points! in
Fig. 8.

Model a b D f c ~Hz! «h s l ~S/m!

1 0.41 0.36 310 1.53105 5 3.0310211

2(Gie* Þ0) 0.41 0.26 130 1.33106 18 1.131023

2(Gie* 5010 j ) 0.41 0.30 140 1.23106 6 2.8310211

3(Gie* Þ0) 0.41 0.26 420 2.03106 35 1.131023

3(Gie* 5010 j ) 0.41 0.29 430 1.93106 24 1.2310210
6-8
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characteristics~reflected in our models by the independe
parametersa andb!, and/or neglected the capacitive comp
nent along the tree branches—a parameter that is how
experimentally required, as it ensures finiteness of the lim
ing permittivity at high frequencies«h . The advantage o
including two independent scaling parametersa and b pre-
sented by our models is apparent from analysis of the da
the results section, while possible implications for biodiele
tric studies were briefly discussed in the preceeding sect
There only remains here the identification of those featu
distinguishing the dispersion spectra of a distribution of
axial lines from those of the RC network models. One of
previous studies@25# has also considered the Cantorian d
tribution of transmission lines, but in addition to presenti
some of the above-mentioned limitations that study was
cused on the low frequency limit of the impedance.

In Fig. 9 we have plotted the frequency characteristics
two sets of model parameters corresponding to thein vitro
model ~Model 1! presented in Fig. 2 and its RC version. A
seen, Model 1 predicts« curves with one or two CPA com
ponents, depending on the chosen parameters, while the
network predicts a component of a more or less CPA t
followed by a rapid, quasi-Debye, drop in« at very high
frequencies, accompanied by a peak in the loss tangent.
seen that, for relatively largeb values, the curves obtaine
from the RC model simulations are significantly mo

FIG. 9. Comparison between the dispersion spectra simul
from the fractal distribution of transmission lines in Fig. 2~Model
1! and from its corresponding lumped~RO! elements network. Pa
rameters not shown in the inset were the same as in the lege
Fig. 8.
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‘‘wavy’’ than those predicted by Model 1. This seriously re
stricts the applicability of RC network models, since expe
mental curves are usually smoother.

C. Possible multiplicity of the results

Determination of permittivity« and conductivitys of bio-
logical tissues is usually based on an assumption that sim
proportionality relations connect the two quantities to t
measuredC andG, namely,C5kcell« andG5kcells, where
kcell is the cell constant. Dielectric spectroscopists’ pref
ence for use of« ands over theZ ~or Y! modulus and phase
is generally justified by the independence of« ands on the
sample~and probe! geometry and size. This reminiscenc
from dielectric studies of biological cell suspensions taci
assumes that the sample is isotropic on large scales, w
means that system’s constituting elements~i.e., the cells! are
distributed at random, which is generally not so for biolog
cal tissues. Thus, the use ofkcell value determined from mea
surements on homogeneous saline solutions is no longe
ceptable, since the true cell constant can be different
different tissue structures. Unfortunately however, the c
constant of a given configuration of electrodes placed o
particular tissue cannot bea priory known, since it requires
the knowledge of tissue equivalent electrical properties. T
latter in turn requires the knowledge of the former, and t
generates a circular reasoning.

According to the above discussion, neither the impedan
nor the permittivity would make any easier the represen
tion of data from strongly heterogeneous~on large scales!
biological systems such as the skin and the lung, and
should expect a multiplicity of results in measurements,
pending on the particular geometry of the measuring cell
on its position relative to the tissue sample. This is, in fact
agreement with our own experience with dielectric measu
ments on biological tissues, and may have profound impli
tions for understanding the process of measurement of ph
cal properties of biological systems, with special regard
the uniqueness of the results. It therefore appears that
communication of the results obtained from dielectric me
surements on tissues should not only include information
the type of probe used and its cell constant but also on pr
dimensions as well as its position relative to the tiss
sample.

D. Model limitations

The present study is by no means definitive, and furt
developments of the model could take into account; the
asymmetry, which implies that one branch divides in
branches of different order@38,39#, and the contribution of
cells to the vascular wall electrical characteristics and to
terminal admittances. In fact, the equivalent complex c
ductance of the vascular wall can be readily incorpora
into the present model, provided that the precise composi
of the wall is known. Our preliminary investigations alon
these lines, however, revealed that the basic findings of
present report—viz., the nonclassical character of the die
tric response of fractal structures—are not essentially alte
by such refinements in the theory.
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V. CONCLUSION

We have presented a general electrical model for Ca
rian structures with application to rough surfaces and vas
lar trees in biological systems. In addition to providing
variety of dispersion curves, our model could mimic most
the dispersion curves obtained from tissues with correspo
ing Cantorian structures, which generally have neithe
Debye-type, nor a simple CPA-type behavior. We belie
that these observations may open the door to a realistic
or
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proach to the longstanding problem of modeling transp
phenomena in biological structures.
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